Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
WUREX PP14 STAINLESS STEEL PICKLING PASTE

SYNONYMS
pickling

PROPER SHIPPING NAME
CORROSIVE LIQUID, TOXIC, N.O.S.(contains nitric acid and hydrofluoric acid)

PRODUCT USE
Pickling of welding seams and stainless steel surfaces.

SUPPLIER
Company: Dynaweld Industrial Supplies Pty Ltd
Address: 5 Sheridan Close, Milperra NSW 2214 Australia
Telephone: +61 2 9772 1144
Emergency Tel: +61 2 9772 1144 (Mon- Fri, 8.30am- 5pm AEST) Poison Information Centre 13 11 26
Fax: +61 2 9774 1685
Email: technical@dynaweld.com.au

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE
HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to NOHSC Criteria, and ADG Code.

RISK
■ Very toxic by inhalation, in contact with skin and if swallowed.
■ Causes severe burns.
■ Risk of serious damage to eyes.

SAFETY
■ Keep locked up.
■ Do not breathe gas/ fumes/ vapour/ spray.
■ Avoid contact with eyes.
■ Wear suitable protective clothing.
■ In case of insufficient ventilation, wear suitable respiratory equipment.
■ To clean the floor and all objects contaminated by this material, use water.
■ Keep container tightly closed.
■ This material and its container must be disposed of in a safe way.
■ Keep away from food, drink and animal feeding stuffs.
■ Take off immediately all contaminated clothing.
■ In case of accident or if you feel unwell, IMMEDIATELY contact Doctor or Poisons Information Centre (show label if possible).
■ This material and its container must be disposed of as hazardous waste.

continued...
Section 2 - HAZARDS IDENTIFICATION

■ In case of accident by inhalation: remove casualty to fresh air and keep at rest.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitric acid</td>
<td>7697-37-2</td>
<td>25-30</td>
</tr>
<tr>
<td>hydrofluoric acid</td>
<td>7664-39-3</td>
<td>5-10</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
■ - For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE
■ If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
■ If there is evidence of severe skin irritation or skin burns:
- Avoid further contact. Immediately remove contaminated clothing, including footwear.
- Flush skin under running water for 15 minutes.
- Avoiding contamination of the hands, massage calcium gluconate gel into affected areas, pay particular attention to creases in skin.
- Contact the Poisons Information Centre.
- Continue gel application for at least 15 minutes after burning sensation ceases.
- If pain recurs, repeat application of calcium gluconate gel or apply every 20 minutes.
- If no gel is available, continue washing for at least 15 minutes, using soap if available. If patient is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
- Transport to hospital, or doctor, urgently.

INHALED
■ - If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.
WUREX PP14 STAINLESS STEEL PICKLING PASTE
Chemwatch Independent Material Safety Data Sheet
Issue Date: 2-Nov-2010
NC317ECP

Section 4 - FIRST AID MEASURES

- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.
- This must definitely be left to a doctor or person authorised by him/her.

For massive exposures:
- If dusts, vapours, aerosols, fumes or combustion products are inhaled, remove from contaminated area.
- Lay patient down.
- Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- If victim is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
- Transport to hospital, or doctor, urgently.

NOTES TO PHYSICIAN

- Following acute or short term repeated exposure to hydrofluoric acid:
 - Subcutaneous injections of Calcium Gluconate may be necessary around the burnt area. Continued application of Calcium Gluconate Gel or subcutaneous Calcium Gluconate should then continue for 3-4 days at a frequency of 4-6 times per day. If a "burning" sensation recurs, apply more frequently.
 - Systemic effects of extensive hydrofluoric acid burns include renal damage, hypocalcaemia and consequent cardiac arrhythmias. Monitor haematological, respiratory, renal, cardiac and electrolyte status at least daily. Tests should include FBE, blood gases, chest X-ray, creatinine and electrolytes, urine output, Ca ions, Mg ions and phosphate ions. Continuous ECG monitoring may be required.
 - Where serum calcium is low, or clinical, or ECG signs of hypocalcaemia develop, infusions of calcium gluconate, or if less serious, oral Sandocal, should be given. Hydrocortisone 500 mg in a four to six hourly infusion may help.
 - Antibiotics should not be given as a routine, but only when indicated.
 - Eye contact pain may be excruciating and 2-3 drops of 0.05% pentocaine hydrochloride may be instilled, followed by further irrigation.

BIOLOGICAL EXPOSURE INDEX - BEI
These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Methaemoglobin in blood</td>
<td>1.5% of haemoglobin</td>
<td>During or end of shift</td>
<td>B, NS, SQ</td>
</tr>
</tbody>
</table>

B: Background levels occur in specimens collected from subjects NOT exposed.
NS: Non-specific determinant; Also seen after exposure to other materials
SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

For acute or short term repeated exposures to fluorides:
- Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids.
- Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level.
- Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours.
- For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately; watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor. Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion.
- Where evidence of hypocalcaemic or normocalcaemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia.

BIOLOGICAL EXPOSURE INDEX - BEI
These represent the determinants observed in specimens collected from a healthy worker exposed at the...
Section 4 - FIRST AID MEASURES

Exposure Standard (ES or TLV):

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorides in urine</td>
<td>3 mg/gm creatinine</td>
<td>Prior to shift</td>
<td>B, NS</td>
</tr>
<tr>
<td></td>
<td>10 mg/gm creatinine</td>
<td>End of shift</td>
<td>B, NS</td>
</tr>
</tbody>
</table>

B: Background levels occur in specimens collected from subjects NOT exposed
NS: Non-specific determinant; also observed after exposure to other exposures.

For intoxication due to nitrogen oxides:
- If patient encountered shortly after exposure, instruct the patient to breathe deeply.
- Enforce complete rest for 24-48 hours even when the patient is not symptomatic.
- During the presymptomatic period inhalation of sodium bicarbonate-sodium chloride aerosol has been suggested as a prophylactic measure. Vitamin E (an antioxidant), in the form of mixed tocopherols, can be given by mouth in doses of several hundred milligrams. N-acetylcysteine (Mycomyst) by aerolization or direct installation may be worthwhile.
- When patient commences coughing or feels slightly fatigued commence oxygen therapy. Nasal prongs or the use of oxygen with continuous distending airway pressure may be appropriate. (Hyperbaric oxygen increased the risk of pulmonary oedema when given together with NO2 in dogs.)
- Removal of frothy exudate from the respiratory tract may be a major therapeutic problem. Suction, postural draining and other methods may be useful.
- Bronchospasm is corrected by inhalation of aerosols of albuterol, isethionate, metaproterenol or terbutaline.
- Atropine, adrenaline, expectorants, emetics, sedatives (other than small doses of morphine) and, usually, cardiac glycosides are ineffective. In a few instances rapid digitalization with a drug like ouabain may be advisable.
- The role of venesection and blood replacement by isotonic saline is the subject of debate although venesection should certainly be avoided once circulatory collapse has become established.
- Artificial ventilation is seldom effective.
- In the presence of severe, confirmed methaemoglobinemia, a cautious trial of methylene blue may be justified even though the safety and efficacy of the procedure has not been established in nitrogen oxides poisoning.
- Steroid therapy, to minimize inflammatory reaction, remains controversial.
- Patients should be observed closely, for at least 6 weeks, to observe, for example, pulmonary oedema.
- Patients suspected of excessive exposure should be kept under observation.

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

continued...
FIRE/EXPLOSION HAZARD
- Non combustible.
- Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit corrosive, poisonous fumes. May emit acrid smoke. Decomposition may produce toxic fumes of: hydrogen fluoride, nitrogen oxides (NOx).

FIRE INCOMPATIBILITY
- None known.

HAZCHEM
2X

Personal Protective Equipment
Breathing apparatus.
Gas tight chemical resistant suit.
Limit exposure duration to 1 BA set 30 mins.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
- DO NOT touch the spill material.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

EMERGENCY RESPONSE PLANNING GUIDELINES (ERPG)
The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour WITHOUT experiencing or developing

life-threatening health effects is:
 nitric acid 78ppm

continued...
hydrofluoric acid 50ppm

irreversible or other serious effects or symptoms which could impair an individual's ability to take protective action is:
 nitric acid 6ppm
 hydrofluoric acid 20ppm

other than mild, transient adverse effects without perceiving a clearly defined odour is:
 nitric acid 1ppm
 hydrofluoric acid 2ppm

American Industrial Hygiene Association (AIHA)

Ingredients considered according to the following cutoffs

<table>
<thead>
<tr>
<th>Category</th>
<th>Cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Toxic (T+)</td>
<td>>= 0.1%</td>
</tr>
<tr>
<td>Toxic (T)</td>
<td>>= 3.0%</td>
</tr>
<tr>
<td>R50</td>
<td>>= 0.25%</td>
</tr>
<tr>
<td>Corrosive (C)</td>
<td>>= 5.0%</td>
</tr>
<tr>
<td>R51</td>
<td>>= 2.5%</td>
</tr>
<tr>
<td>otherwise</td>
<td>>= 10%</td>
</tr>
</tbody>
</table>

where percentage is percentage of ingredient found in the mixture

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- DO NOT allow clothing wet with material to stay in contact with skin.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

SUITABLE CONTAINER
- DO NOT use aluminium or galvanised containers.
- Check regularly for spills and leaks.
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
Section 7 - HANDLING AND STORAGE

- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
- Material is corrosive to most metals, glass and other siliceous materials.

STORAGE INCOMPATIBILITY

■ Nitric acid:
- is a strong acid and oxidiser
- reacts with water or steam to form toxic and corrosive nitrous fumes
- reacts violently with water when added as the concentrated acid with generation of heat (always add acid to water to dilute)
- reacts violently with reducing agents, bases, combustible materials, finely dispersed or powdered metals and metal alloys, acetic anhydride, acetone, acetylene, acrolein, acrylonitrile, alcohols, aliphatic amines, allyl chloride, ammonia, aniline, anionic exchange resins, 1,4-benzoquinone dimine, 1,2-bis(trimethylsilyl)hydrazine, bromine pentfluoride, cresol, crotonaldehyde, cumene, cyanides, diethyl ether, 1,2-dimethyl-2-trimethylsilylhydrazine, diphenyltin, divinyl ether, N-ethylnilnine, ethyl phosphate, 2-ethynylfurane, fluoride, halides of phosphorus or sulfur, hydrazine, hydrogen peroxide, germanium, hydrogen iodide, lithium triethylsilyl amide, metal acetyldes, 2-methyliothiophene, pentanethiol, phosphorus and phosphorus vapours, polyurethane foam, potassium permanganate, resorcinol, rubber (containing lead), sulfides, sulfur, sulfur dioxide, stibine, thiophene, triethylgalium, polydibromosilane, vinyl ether, zinc ethoxide, zinc phosphate, organic solvents and many other substances and materials
- is incompatible with many substances including acrylates, aldehydes, alkalolamines, alkylene oxides, aromatic amines, amides, cresols, cyclic ketones, epichlorohydrin, glycols, hydrocarbons, isocyanates, ketones, oleum, organic anhydrides, paraldehyde, phenols, silanes, strong oxidisers, substituted allyls, sulfuric acid, terpenes, vinyl acetate, vinylidene chloride
- forms heat, impact, friction or shock explosive substances with acetic acid, acetoxyethylene glycol, ammonium nitrate, anilinium nitrate, 1,2-dichloroethane, dichloroethylene, dichloromethane, diethylaminoethanol, 3,6-dihydro-1,2,2H-oxazine, dimethyl ether, dinitrobenzenes, disodium phenyl orthophosphate, 2-hexanal, metal salicylates, 3-methylcyclohexanone, nitroaromatics, nitrobenzenes, nitromethane, beta-propyl acrolein, salicylic acid
- increases the explosive sensitivity of nitromethane
- may decompose when heated with the formation of nitrogen dioxide (which also produces discoulouration - colourless 100% acid cannot be stored in the presence of light with formation of nitrogen dioxide (which cause discoulouration)
- attacks most metals and some plastics, rubber and coatings.
- Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- Inorganic acids neutralise chemical bases (for example: amines and inorganic hydroxides) to form salts - neutralisation can generate dangerously large amounts of heat in small spaces.
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting “bumping” can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerisation of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide.
- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitriles, nitrites, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfides, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
- Acids often catalyse (increase the rate of) chemical reactions.
- Inorganic oxidising agents can react with reducing agents to generate heat and products that may be gaseous (causing pressurization of closed containers). The products may themselves be capable of further reactions (such as combustion in the air).
- Organic compounds in general have some reducing power and can in principle react with compounds in this

continued...
class. Actual reactivity varies greatly with the identity of the organic compound.
- Inorganic oxidising agents can react violently with active metals, cyanides, esters, and thiocyanates.
- Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.
- Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.

Salts of inorganic fluoride:
- React with water forming acidic solutions.
- Are violent reactive with boron, bromine pentafluoride, bromine trifluoride, calcium disilicide, calcium hydride, oxygen difluoride, platinum, potassium.
- In aqueous solutions are incompatible with sulfuric acid, alkalis, ammonia, aliphatic amines, alkanolamines, alkylene oxides, amides, epichlorhydrin, isocyanates, nitromethane, organic anhydrides, vinyl acetate.
- Corrode metals in presence of moisture
- May be incompatible with glass and porcelain.
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.

Hydrogen fluoride:
- Reacts violently with strong oxidisers, acetic anhydride, alkalis, 2-aminoethanol, arsenic trioxide (with generation of heat), bismuthic acid, calcium oxide, chlorosulfonic acid, cyanogen fluoride, ethylenediamine, ethyleneimine, fluorine (fluorine gas reacts vigorously with a 50% hydrofluoric acid solution and may burst into flame), nitrogen trifluoride, N-phenylazopiperidine, oleum, oxygen difluoride, phosphorus pentoxide, potassium permanganate, potassium tetrafluorosilicate(2-), beta-propiolactone, propylene oxide, sodium, sodium tetrafluorosilicate, sulfuric acid, vinyl acetate
- Reacts (possibly violently) with aliphatic amines, alcohols, alkanolamines, alkylene oxides, aromatic amines, amides, ammonia, ammonium hydroxide, epichlorhydrin, isocyanates, metal acetylides, metal silicides, methanesulfonic acid, nitrogen compounds, organic anhydrides, oxides, silicon compounds, vinylidene fluoride
- Attacks glass and siliceous materials, concrete, ceramics, metals (flammable hydrogen gas may be produced), metal alloys, some plastics, rubber coatings, leather, and most other materials with the exception of lead, platinum, polyethylene, wax.
- Avoid storage with reducing agents.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

<table>
<thead>
<tr>
<th>EXPOSURE CONTROLS</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>nitric acid (Nitric acid)</td>
<td>2</td>
<td>5.2</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>hydrofluoric acid (Hydrogen fluoride (as F))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2.6</td>
</tr>
</tbody>
</table>

EMERGENCY EXPOSURE LIMITS

<table>
<thead>
<tr>
<th>Material</th>
<th>Revised IDLH Value (mg/m³)</th>
<th>Revised IDLH Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued...
nitric acid 25
hydrofluoric acid 30 [Unch]
hydrofluoric acid 250

MATERIAL DATA

HYDROFLUORIC ACID:
WUREX PP14 STAINLESS STEEL PICKLING PASTE:
- Odour Threshold for hydrogen fluoride: 0.042 ppm
 NOTE: Detector tubes for hydrogen fluoride, measuring in excess of 1.5 ppm, are available commercially.
 Long-term measurements (8 hrs) may be conducted to detect concentrations exceeding 0.25 ppm.

Hydrogen fluoride is a primary irritant which as a gas causes severe respiratory irritation and as a liquid which causes severe and painful burns to the skin and eyes. The recommendation for TLV-TWA is based on the results of controlled inhalation studies in human volunteers. The limit is thought to minimise the potential for occurrence of dental and/or osteofluorosis (systemic fluorosis) and to prevent the risk of primary irritation to the eyes, nose, throat and lower respiratory system.

At concentrations exceeding 3 ppm there have been reports of skin reddening and burning of the nose and eyes.

Odour Safety Factor (OSF)
OSF = 71 (HYDROGEN FLUORIDE).

NITRIC ACID:
WUREX PP14 STAINLESS STEEL PICKLING PASTE:
- For nitric acid:
 Odour Threshold Value: 0.27 ppm (detection)
 NOTE: Detector tubes for nitric acid, measuring in excess of 5 ppm, are commercially available.

The TLV-TWA is protective against corrosion of the skin, tissue and other membranes, against irritation to the eyes and mucous membranes, and against acute pulmonary oedema or chronic obstructive lung disease. It is not clear whether the TLV-TWA and STEL values will prevent potentiation of the toxicity of inhaled nitrogen dioxide.

HYDROFLUORIC ACID:
- Exposed individuals are reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.
 Odour Safety Factor (OSF) is determined to fall into either Class A or B.
 The Odour Safety Factor (OSF) is defined as:
 OSF = Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>OSF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>550</td>
<td>Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV- TWA for example) is being reached, even when distracted by working activities.</td>
</tr>
<tr>
<td>B</td>
<td>26- 550</td>
<td>As "A" for 50-90% of persons being distracted</td>
</tr>
<tr>
<td>C</td>
<td>1- 26</td>
<td>As "A" for less than 50% of persons being distracted</td>
</tr>
<tr>
<td>D</td>
<td>0.18- 1</td>
<td>10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached</td>
</tr>
<tr>
<td>E</td>
<td><0.18</td>
<td>As "D" for less than 10% of persons aware of being tested</td>
</tr>
</tbody>
</table>

continued...
PERSONAL PROTECTION

EYE
- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted.
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET
- Elbow length PVC gloves.
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Neoprene rubber gloves.

OTHER
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

RESPIRATOR
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS
- Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator.
 Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.
 An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

continued...
WUREX PP14 STAINLESS STEEL PICKLING PASTE
Chemwatch Independent Material Safety Data Sheet
Issue Date: 2-Nov-2010
NC317ECP

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE
Green acidic paste with a pungent odour; mixes with water.

PHYSICAL PROPERTIES
Liquid.
Mixes with water.
Corrosive.
Acid.
Toxic or noxious vapours/gas.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°C)</td>
<td>Not Available</td>
<td>Viscosity</td>
<td>Not Available</td>
</tr>
<tr>
<td>Boiling Range (°C)</td>
<td>106</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°C)</td>
<td>Not Applicable</td>
<td>pH (1% solution)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition Temp (°C)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td><1</td>
</tr>
<tr>
<td>Autoignition Temp (°C)</td>
<td>Not Applicable</td>
<td>Vapour Pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
<td>Specific Gravity (water=1)</td>
<td>1.2</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
<td>Relative Vapour Density (air=1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
<td>Evaporation Rate</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Section 10 - CHEMICAL STABILITY AND REACTIVITY INFORMATION

CONDITIONS CONTRIBUTING TO INSTABILITY
- Contact with alkaline material liberates heat.
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual.
Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of oesophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the oesophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.

continued...
Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs. Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities. The brain and kidneys may be affected. Other toxic effects include headache, increased saliva output, jerking of the eyeball and dilated pupils, lethargy, stupor, coma and rarely, convulsions.

Exposure to nitric acid causes burning pain, severe corrosion and scarring of the gastrointestinal tract, adhesions, stricture-obstruction formation and even pernicious anaemia. Death may be delayed 12 hours to 14 days or several months from these complications, also, vomiting, aspiration, lung inflammation and shock.

EYE

- If applied to the eyes, this material causes severe eye damage. Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.

Experiments in which a 20-percent aqueous solution of hydrofluoric acid (hydrogen fluoride) was instilled into the eyes of rabbits caused immediate damage in the form of total corneal opacification and conjunctival ischemia; within an hour, corneal stroma edema occurred, followed by necrosis of anterior ocular structures. Eye contact with both diluted and concentrated nitric acid may result in burns causing pain, adhesions, corneal damage, blindness or permanent eye damage.

SKIN

- Skin contact with the material may produce severely toxic effects; systemic effects may result following absorption and these may be fatal.

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Fluorides are easily absorbed through the skin and cause death of soft tissue and erode bone. Healing is delayed and death of tissue may continue to spread beneath skin. Contact of the skin with liquid hydrofluoric acid (hydrogen fluoride) may cause severe burns, erythema, and swelling, vesculation, and serious crusting. With more serious burns, ulceration, blue-gray discoloration, and necrosis may occur. Solutions of hydrofluoric acid, as dilute as 2%, may cause severe skin burns. Skin contact with nitric acid may cause corrosion, epithelial thickening, yellow discolouration of the skin due to the formation of xanthoproteic acid, blisters and scars depending on the concentration exposed. Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset. Acute effects of fluoride inhalation include irritation of nose and throat, coughing and chest discomfort. A single acute over-exposure may even cause nose bleed. Pre-existing respiratory conditions such as emphysema, bronchitis may be aggravated by exposure. Occupational asthma may result from exposure. Acute inhalation exposures to hydrogen fluoride (hydrofluoric acid) vapours produce severe eye, nose, and throat irritation; delayed fever, cyanosis, and pulmonary edema; and may cause death. Even fairly low airborne concentrations of hydrogen fluoride produce rapid onset of eye, nose, and throat irritation. Hydrogen fluoride has a strong irritating odor that is discernible at concentrations of about 0.04 ppm. Higher concentrations of the vapour/ mist may cause corrosion of the throat, nose and lungs, leading to severe inflammation, pulmonary oedema or possible hypocalcaemia. Vapour concentration of 10 ppm is regarded as intolerable but a vapour concentration of 30 ppm is considered by NIOSH as: Immediately Dangerous to Life and Health (IDLH).

In humans, inhalation of hydrogen fluoride gas may cause immediate or delayed-onset pulmonary oedema after a 1-hour exposure. In addition, exposure to high concentrations of the vapors of hydrofluoric acid characteristically results in ulcerative tracheobronchitis and haemorrhagic pulmonary edema; this local reaction is equivalent to that caused by gaseous hydrogen chloride. From accidental, occupational, and volunteer exposures, it is estimated that the lowest lethal concentration for a 5-minute human exposure to hydrogen fluoride is in the range of 50 to 250 ppm. Significant exposures by dermal or inhalation route may
cause hypocalcaemia and hypomagnesaemia; cardiac arrhythmias may follow. Acute renal failure has also been documented after an ultimately fatal inhalation exposure.

Fluorides are not bound to any extent to plasma proteins. In human serum the fluoride occurs equally as nonionic and ionic forms. When fluoride intake is high the ionic form predominates.

Repeated sublethal exposures to hydrogen fluoride produce liver and kidney damage.

Rats, rabbits, guinea pigs, and dogs subject to hydrogen fluoride inhalation experienced significant irritation of the conjunctivae, nasal tissues, and respiratory system after acute inhalation exposures at near-lethal levels. Pathological lesions were observed in the kidney and liver, and the severity of the lesions was dose related. The external nares and nasal vestibules were black, and, at dosages causing considerable mortality, those areas showed zones of mucosal and submucosal necrosis.

Inhalation of nitric acid mist or fumes may produce respiratory symptoms. Depending on the concentration and duration of exposure, pulmonary irritation, cough, gagging, chest pain, low body oxygen, pulmonary oedema and damage may occur.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may produce severely toxic effects. Relatively small amounts absorbed from the lungs may prove fatal.

CHRONIC HEALTH EFFECTS

■ Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.

■ Chronic exposure may inflame the skin or conjunctiva.

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

■ Extended exposure to inorganic fluorides causes fluorosis, which includes signs of joint pain and stiffness, tooth discoloration, nausea and vomiting, loss of appetite, diarrhoea or constipation, weight loss, anaemia, weakness and general unwellness. There may also be frequent urination and thirst. Redness, itchiness and allergy-like inflammation of the skin and mouth cavity can occur. The central nervous system may be involved.

■ Prolonged or repeated overexposure to low concentrations of nitric acid vapour may cause chronic bronchitis, corrosion of teeth and also, chemical pneumonia.

Hydrogen fluoride easily penetrates the skin and causes destruction and corrosion of the bone and underlying tissue. Ingestion causes severe pains and burns in the mouth and throat and blood calcium levels are dangerously reduced. Symptoms include spasm and twitching of the muscles, high fever, convulsions and general extreme pain. Inhalation may cause corrosion of the throat, nose and lungs, leading to severe inflammation and lung swelling.

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
Inhalation (rat) LC50: 2500 ppm/1h ** DuPont
Unreported (man) LDLo: 110 mg/kg
Inhalation (Cat) LC: 500 mg/m³/4h
Inhalation (Rat) LC50: 130 mg/m³/4h
Oral (Human) LD: 430 mg/kg
Inhalation (Cat) TCLo: 300 mg/m³/2h

■ The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.
■ The material may cause severe skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Repeated exposures may produce severe ulceration.
Oral (?) LD50: 50-500 mg/kg *

[Various Manufacturers]

** HYDROFLUORIC ACID:

** TOXICITY
Inhalation (rat) 5: min LC50: 4970 ppm
Inhalation (rat) 1: Hour LC50: 1310 ppm
Inhalation (human) LCLo: 50 ppm/30m
Inhalation (man) TCLo: 100 mg/m³/1m
Inhalation (rat) LC50: 1276 ppm/1h
(liver and kidney damage) [Manufacturer]
for hydrogen fluoride (as vapour)

** IRRITATION
Eye (human): 50 mg - SEVERE

** Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

** NITRIC ACID:

** HYDROFLUORIC ACID:

** WUREX PP14 STAINLESS STEEL PICKLING PASTE:
■ DO NOT discharge into sewer or waterways.
■ Prevent, by any means available, spillage from entering drains or water courses.

** NITRIC ACID:
■ For oxides of nitrogen:
 Environmental fate
 Oxides of nitrogen are part of the biogeochemical cycling of nitrogen, and are found in air, soil and water.
 In the atmosphere, oxides of nitrogen are rapidly oxidised to nitrogen dioxide (half-life about 50 days), which dissolves in water to produce dilute nitric acid and precipitates in rain. An increased rate of formation of oxides of nitrogen therefore contributes to 'acid rain'.
 In the stratosphere, oxides of nitrogen play a crucial role in maintaining the level of ozone. Ozone is formed through the photochemical reaction of nitrogen dioxide and oxygen. However, too little nitrogen dioxide results in too little ozone being formed. On the other hand, too much nitric oxide reduces the level of ozone because of an increase in the reaction of ozone to convert nitric oxide to nitrogen dioxide.
 In the lower atmosphere, oxides of nitrogen play a major role in the formation of photochemical smog in a complex set of reactions that lead to the formation of a variety of nitrated organic compounds (from volatile organic matter) and excessive levels of ozone.
 Environmental transport The oxides of nitrogen travel as gases through soil and the atmosphere, and in solution in water in soils, rivers and lakes, and rain and snow.

** HYDROFLUORIC ACID:
■ Although small amounts of fluorides are conceded to have beneficial effects, two forms of chronic toxic effect, dental fluorosis and skeletal fluorosis may be caused by excessive intake over long periods.
Fluorides are absorbed by humans following inhalation of workplace and ambient air that has been contaminated, ingestion of drinking water and foods and dermal contact.

continued...
Both hydrogen fluoride and particulate fluorides will be transported in the atmosphere and deposited on land or water by wet and dry deposition. Non-volatile inorganic fluoride particulates are removed from the atmosphere via condensation or nucleation processes. Fluorides adsorbed on particulate matter in the atmosphere are generally stable and are not readily hydrolysed, although they may be degraded by radiation if they persist in the atmosphere. Fluorine and the silicon fluorides (fluosilicates, silicofluorides) are hydrolysed in the atmosphere to form hydrogen fluoride. Hydrogen fluoride may combine with water vapour to produce an aerosol or fog of aqueous hydrofluoric acid. Based upon available data, inorganic fluoride compounds, with the exception of sulfur hexafluoride, are not expected to remain in the troposphere for long periods or to migrate to the stratosphere. Estimates of the residence time of sulfur hexafluoride in the atmosphere range from 500 to several thousand years. Fluoride in aerosols can be transported over large distances by wind or as a result of atmospheric turbulence. The distance travelled is determined by the deposition velocity of both the gaseous hydrogen fluoride and the fluorides in particulate form. Atmospheric fluorides may be transported to soils and surface waters through both wet and dry deposition processes.

Fluorides undergo transformations in soil and water, forming complexes and binding strongly to soil and sediment.

In water, the transport and transformation of inorganic fluorides are influenced by pH, water hardness and the presence of ion-exchange materials such as clays. In natural water, fluoride forms strong complexes with aluminum in water, and fluorine chemistry in water is largely regulated by aluminum concentration and pH. Below pH 5, fluoride is almost entirely complexed with aluminum and consequently, the concentration of free F- is low. As the pH increases, Al-OH complexes dominate over Al-F complexes and the free F- levels increase. Fluoride forms stable complexes with calcium and magnesium, which are present in sea water. Calcium carbonate precipitation dominates the removal of dissolved fluoride from sea water. The residence time for fluoride in ocean sediment is calculated to be 2-3 million years. Fluorosilicic acid and hydrofluoric acid in high aquatic concentrations such as may be found in industrial waste ponds may volatilise, releasing silicon tetrafluoride and hydrogen fluoride into the atmosphere.

Solubilisation of inorganic fluorides from minerals may also be enhanced by the presence of ion-exchange materials (e.g., bentonite clays and humic acid). Once dissolved, inorganic fluorides remain in solution under conditions of low pH and hardness and in the presence of ion-exchange material. Soluble inorganic fluorides may also form aerosols at the air/water interface or vaporise into the atmosphere whereas undissolved species generally undergo sedimentation.

Factors that influence the mobility of inorganic fluorides in soil are pH and the formation of aluminium and calcium complexes. In more acidic soils, concentrations of inorganic fluoride were considerably higher in the deeper horizons. The low affinity of fluorides for organic material results in leaching from the more acidic surface horizon and increased retention by clay minerals and silts in the more alkaline, deeper horizons. The maximum adsorption of fluoride to soil was reported to occur at pH 5.5. In acidic soils with pH below 6, most of the fluoride is in complexes with either aluminium or iron. Fluoride in alkaline soils at pH 6.5 and above is almost completely fixed in soils as calcium fluoride, if sufficient calcium carbonate is available. Fluoride is extremely immobile in soil, as determined by lysimeter experiments.

Populations living in areas with high fluoride levels in groundwater may be exposed to higher levels of fluorides in their drinking water or in beverages prepared with the water. Among these populations, outdoor laborers, people living in hot climates, and people with polydipsia will generally have the greatest daily intake of fluorides because they consume greater amounts of water. Foods characteristically high in fluoride content are certain types of fish and seafood (1.9?28.5 mg/kg), especially those types in which the bones are consumed, bone products such as bone meal and gelatin, and tea, which contains approximately 0.52 mg fluoride/cup.

Fluoride is mainly absorbed by the body in the form of hydrogen fluoride, which has a pKa of 3.45. That is, when ionic fluoride enters the acidic environment of the stomach lumen, it is largely converted into hydrogen fluoride. Most of the fluoride that is not absorbed from the stomach will be rapidly absorbed from the small intestine.

Fluorides have been shown to accumulate in animals that consume fluoride-containing foliage. Accumulation is primarily in skeletal tissue and therefore, it is unlikely that fluoride will biomagnify up continued...
the food chain.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitric acid</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrofluoric acid</td>
<td>LOW</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.

Otherwise:
- If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with soda-ash or soda-lime followed by: burial in a land-fill specifically licenced to accept chemical and/or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

Labels Required: CORROSIVE, TOXIC

HAZCHEM:

2X (ADG7)

ADG7:

- Class or division: 8
- UN No.: 2922
- Special provisions: 274
- Subsidiary risk: 6.1
- UN packing group: II
- Packing Instructions: None

continued...
Limited quantities: 1 L
Portable tanks and bulk containers - Special provisions:
Packagings and IBCs - Special packing provisions:
Name and description: CORROSIVE LIQUID, TOXIC, N.O.S.

Land Transport UNDG:
Class or division: 8 Subsidiary risk: 6.1
UN No.: 2922 UN packing group: II
Shipping Name: CORROSIVE LIQUID, TOXIC, N.O.S. (contains nitric acid and hydrofluoric acid)

Air Transport IATA:
ICAO/IATA Class: 8 ICAO/IATA Subrisk: 6.1
UN/ID Number: 2922 Packing Group: II
Special provisions: A3
Cargo Only
Packaging Instructions: 812 Maximum Qty/Pack: 30 L
Passenger and Cargo
Packaging Instructions: 808 Maximum Qty/Pack: 1 L
Limited Quantity
Packaging Instructions: Y808 Maximum Qty/Pack: 0.5 L
Shipping Name: CORROSIVE LIQUID, TOXIC, N.O.S. *(CONTAINS NITRIC ACID AND HYDROFLUORIC ACID)

Maritime Transport IMDG:
IMDG Class: 8 IMDG Subrisk: 6.1
UN Number: 2922 Packing Group: II
EMS Number: F - A , S - B Special provisions: 274
Limited Quantities: 1 L
Shipping Name: CORROSIVE LIQUID, TOXIC, N.O.S.

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE S6

REGULATIONS

nitric acid (CAS: 7697-37-2) is found on the following regulatory lists:
Australia Exposure Standards; *Australia Hazardous Substances*; *Australia High Volume Industrial Chemical List (HVICL)*; *Australia Inventory of Chemical Substances (AICS)*; *Australia National Pollutant Inventory*; *Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6*, *Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)*; *Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5*; *GESAMP/EHS Composite List*; *GESAMP Hazard Profiles*; *IMO IBC Code Chapter 17: Summary of minimum requirements*; *IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk*; *International Council of Chemical Associations (ICCA) - High Production Volume List*; *OECD Representative List of High Production Volume (HPV) Chemicals*

hydrofluoric acid (CAS: 7664-39-3) is found on the following regulatory lists:
Australia - Queensland Hazardous Materials and Prescribed Quantities for Major Hazard Facilities; *Australia Exposure Standards*; *Australia Hazardous Substances*, *Australia Inventory of Chemical Substances (AICS)*; *Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6*, *Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2)*; *Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3)*; *Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix J (Part 2)*;
No data for Wurex PP14 Stainless Steel Pickling Paste (CW: 23-4618)

Section 16 - OTHER INFORMATION

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 2-Nov-2010
Print Date: 2-Nov-2010

This is the end of the MSDS.